

Mathematics: Analysis and Approaches - Higher level

PRACTICE PAPER 4 Compiled by Sotiris Avdalas

Topic 1: Number and algebra

1. [Maximum ma	ırk: 4] [w	vithout	GDC
----------------	------------	---------	-----

Find the equation of the quadratic which passes through the points
(-1, 8), (2, -1), and (3,0).

2. [Maximum mark: 4] [without GDC]

Solve the following system of equations:
x - 2y + z = 1 and $2x + 2y - z = 2$ and $4x - 8y + 4z = 4$

3. [Maximum mark: 6] [without GDC]

Using mathematical induction, prove that $n!>2^n$, $n\in Z$, $n\geq 4$.

4. [Maximum mark: 8] [without GDC]

Using mathematical induction, prove that $9^{n+1} - 9^n$ 64, for $n = 1,2,3,$	8n-9 is divisible by
	<u> </u>

5. [Maximum mark: 4] [without GDC]

Prove that if z is a complex number, then both z + z* and	d zz* are real.
	•••••
6. [Maximum mark: 4] [without GDC]	
Find the real cubic polynomial with zeros: -2 and 1 + i	
	•••••
	•••••
	•••••

7. [Maximum mark: 10] [without GDC]

Let z = 2 - 2i
(a) Find the polar form $r \text{cis}\theta$ of the complex numbers z and $-z$. [4]
(b) Find the polar form $r \text{cis}\theta$ of the complex numbers \overline{z} and $-\overline{z}$. [4]
(c) Represent the four complex numbers above on the Complex plane.[2]

8. [Maximum mark: 9] [without GDC]

Suppose z=1+i and w=1- $\sqrt{3}i$	
(a) Write z and w in polar form.	[3]
(b) Hence find zw in polar form.	[3]
(c) Describe the transformation to z when it is multiplied by w.	[3]
	••••••
	•
	••••••
	••••••
	••••••

9.	[Maximum mark: 4]	[without GDC]
----	-------------------	---------------

Find the sum $i+i^2+i^3+\cdots+i^{20}$	
	•••••
10. [Maximum mark: 4] [without GDC]	
Solve the equation $z^4 = 16\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$.	
	•••••
	•••••
	•••••
	•••••

11. [Maximum mark: 6] [without GDC]

Prove that arg(z") =nargz for all complex numbers z and rational n.

12. [Maximum mark: 6] [without GDC]

If b is a multiple of a , prove then that 2^b-1 is a multiple of 2^a-1 , $a,b\in Z$.